Functions, Pt. 1



To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—-B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Then prove B.

AV DB

Either prove —-A — B or
prove B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.

Review from Week 1:
Proof techniques
summary table.

We’ll refer to this\
several times today
to help us write
proofs. You'll find
that although you’ve
never written proofs
about Functions
before, it’s just the
same bag of tricks

\tiat we’'re used ty




Outline for Today

* What is a Function?

« It’s more nuanced than you might expect.
 Domains and Codomains

 Where functions start, and where functions end.
* Defining a Function

 Expressing transformations compactly.
* Special Classes of Functions

« Useful types of functions you’ll encounter IRL.
 Proofs on First-Order Definitions

« A key skill.



What is a function?



In high school math:

Y

A A 1

Take a real -4
number as input

f(x) =x*-bx:+14

Give a real
number as output




In C++ coding:

int flipUntil(dint n
int numHeads =

. _ Take input(s) of
int numTries = §

0,
O, Jdifferent type(s)

while (numHeads < n) {

if (randomBoolean()) {
numHeads++;
}

numTries++;

}

eturn numTries;

Return an output
of some type




In logic, functions are deterministic.

That is, given the same input, a function must
always produce the same output.

In C++ code, we can use random numbers,
but that would not be a valid function under
our definition.



Domains and Codomains

» Every function f has two sets associated with it: its

domain and its codomain.

« A function f can only be applied to elements of its
domain. For all x in the domain, f(x) belongs to the

codomain.

The function
must be defined
for every element
of the domain.

Domain

O

O

O

Codomain

The output of the
function must
always be in the
codomain, but
not all elements
of the codomain
must be
produced as
outputs.




Domains and Codomains

» Every function f has two sets associated with it: its
domain and its codomain.

« A function f can only be applied to elements of its
domain. For all x in the domain, f(x) belongs to the

codomain.
The domain of this function
is R. Any real number can be
provided as input.
4 \
double absoluteValueOf(double Xx) {

The codomain of this function is if (x >=0) {
R. Everything produced is a real return Xx;
number, but not all real numbers } else {

can be produced.

return -X;

¥



Domains and Codomains

« If fis a function whose domain is A and whose
codomain is B, we write f: A - B.

 Think of this like a “function prototype” in C++.

Codomain Domain Domain Codomain

B f(A arg)s f:A-B

Function Function
name name




The Official Rules for Functions

 Formally speaking, we say that f: A — B if the
following two rules hold.

« First, f must be obey its domain/codomain rules:

Va € A.3b € B. f(a) = b
(“Every input in A maps to some output in B.”)

 Second, f must be deterministic:

Va: € A. Vaz € A. (a1 = az - f(a1) = f(az))
(“Equal inputs produce equal outputs.”)

If you're ever curious about whether something is a valid
function, look back at these rules to decide. The formal
definition holds the answers!




The Official Rules for Functions

 Formally speaking, we say that f: A — B if the
following two rules hold.

« First, f must be obey its domain/codomain rules:

Va € A.3b € B. f(a) = b
(“Every input in A maps to some output in B.”)

 Second, f must be deterministic:

Va:r € A. Va2 € A. (al = dz = f(al) — f(a2))
(“Equal inputs produce equal outputs.”)

Quick Check:
 T/F: A function can have an empty domain.

» If you have extra time, discuss this with your neighbors:
* T/F: A function can have an empty codomain.




Defining Functions



Defining Functions

» To define a function, you need to
» specify the domain,
* specity the codomain, and
* give a rule used to evaluate the function.

« All three pieces are necessary.

 There are a few ways to do this. Let’s go
over a few examples.



Defining Functions

» To define a function, you need to
» specify the domain, } handled by using the
» specify the codomain, and A
 give a rule used to evaluate the function. } Also need to do

this! Learn about
1t now.

« All three pieces are necessary.

 There are a few ways to do this. Let’s go
over a few examples.



Functions can be defined as a picture.

g Anna’s
Hummingbird

White-Tailed
Kite

Red-Shouldered
Hawk

Goldfinch

Draw sets (ovals) to give the domain and codomain.
Draw a mapping (arrows) to define the function’s action.



Functions can be defined as a rule.

f:7Z - 7, where
flx) =x*+3x-15

Use the : notation to name the domain and codomain.
Use the f(x) = notation to define the function’s action.



Some rules are given piecewise.

f:7Z - N, where

( :
In 1 n=0
f(n)_t—n if n<0

Again, both parts of the rule (: and f(x)) are necessary. Make
sure at least one condition applies to each element of the
domain, and that if more than one condition applies to the

same element, they give the same answer!)



Some Nuances



X+2
X+1

Quick Check:
If introduced as f: N —» R,

would this be a valid function?




X+2
X+1

Quick Check:
If introduced as f: N —» R,

would this be a valid function?

Yep, it’s a function! Every
natural number maps to
some real number.




X+2
X+1

Quick Check:
If introduced as f: R = R, would
this be a valid function?




o X+2
fix) = 3

Quick Check:
If introduced as f: R = R, would
this be a valid function?

=== This expression isn’t

defined when x =-1,so0 f
isn’t defined over its full
domain. We therefore
don’t consider it to be a

function.




Stanford >  Cardinal

Berkeley >  Blue
Michigan / > Gold
Arkansas \: White

Is this a function from A to B?



California Montpelier

New York Sacramento
Vermont Albany
Washington
DC

Is this a function from A to B?



Special Types of Functions












Undoing by Doing Again

 Some operations invert themselves. For example:

* Flipping a switch twice is the same as not flipping it at all.
* In first-order logic, =—A is equivalent to A.
* In algebra, -(-x) = x.

* In set theory, (A A B) A B = A. (Yes, really!)

* Operations with these properties are surprisingly
useful in CS theory and come up in a bunch of

contexts.
* Storing compressed approximations of sets (XOR filters).
* Theoretically unbreakable encryption (one-time pads).

» Transmitting a large file to multiple receivers (fountain
codes).



Involutions

A function f: A = A (notice this requires the domain
and codomain to be the same set) 1S called an
involution it the following first-order logic
statement is true about f:

Vx € A. f(f(x)) = x.
(“Applying f twice is equivalent to not applying f at all.”)

* Involutions have lots of interesting properties.
Let’s explore them and see what we can find.



Involutions

 Which of the following are involutions?
o f:Z - Z defined as f(x) = x.
o f:7Z - Z defined as f(x) = -x.
 f: R - R defined as f(x) = /.
 f: N - N defined as follows:

_|In+1 1if n is even
fin) = n—1 if n is odd

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions

 Which of the following are involutions?
o f:Z - Z defined as f(x) = x.

Quick Check:
* f:Z - Z defined as f(x) = -x. Enter the number of
 f: R - R defined as f(x) = Y. involutions (0-4) on PollEv.
 f: N - N defined as follows:
n+l 1if n is even
f(n) = :

n—1 if n is odd

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(x)) = x.



Involutions

 Which of the following are involutions?
o f:Z - Z defined as f(x) = x.

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions

 Which of the following are involutions?
e f:7Z - Z defined as f(x) = x. Yep!

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions

 Which of the following are involutions?

o f:7Z - Z defined as f(x) = -x.

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions

 Which of the following are involutions?

e f:Z - Z defined as f(x) = -x. Yep!

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions

 Which of the following are involutions?

 f: R = R defined as f(x) = /.

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions

 Which of the following are involutions?

 f: R - R defined as f(x) = '/x. Not a function!

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions

 Which of the following are involutions?

 f: N - N defined as follows:

_|In+1 1if n is even
fin) = n—1 if n is odd

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions

 Which of the following are involutions?

 f: N - N defined as follows: Yep!

_|In+1 1if n is even
fin) = n—1 if n is odd

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions

 Which of the following are involutions?
e f:7Z - Z defined as f(x) = x. Yep!
e f:Z - Z defined as f(x) = -x. Yep!
 f: R - R defined as f(x) = '/x. Not a function!
 f: N - N defined as follows: Yep!

_|In+1 1if n is even
fin) = n—1 if n is odd

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions

 Which of the following are involutions?
e f:7Z - Z defined as f(x) = x. Yep!
e f:Z - Z defined as f(x) = -x. Yep!
e f:R-{0} =>R- {0} defined as f(x) = '/x. Yep!
 f: N - N defined as follows: Yep!

_|In+1 1if n is even
fin) = n—1 if n is odd

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions, Visually

o o
® e
@ @
5 ®
o o

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Involutions, Visually

=
=2
o

A function f: A - A is called an involution if the following
first-order logic statement is true about f:

Vx € A. f(f(xX)) = x.



Proofs on Involutions



Theorem: The function f: Z - Z defined as

f(n) =

is an involution.

n+1 if n is even
n—1 if n is odd

For this problem, we will rely on a
Lemma (like a “helper theorem?”),
and assume this is true, for this
problem only:

Lemma: For all integers n, n is
odd if and only if n + 1 is even.



Theorem: The function f: Z — Z defined as

f(n) = n+1 if n is even
n—1 if n is odd

is an involution.
Proof:



Theorem: The function f: Z — Z defined as

f(n) = n+1 if n is even
n—1 if n is odd

is an involution.
Proof:

What does it mean for fto be an
iInvolution?




Theorem: The function f: Z — Z defined as

f(n) = n+1 if n is even
n—1 if n is odd

is an involution.
Proof:

What does it mean for fto be an
iInvolution?

Vn € Z. fif(n)) = n.




Theorem: The function f: Z - Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.
Proof:

What does it mean for f to be an
iInvolution?

vn € Z. f(f(n)) = n.

Therefore, we'll have the reader pick
some n € Z, then argue that f(f(n)) = n.




Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.
Proof:

Vn € Z.

have the reader pick

some n € Z




Theorem: The function f: Z — Z defined as

f(n) = n+1 if n is even
n—1 if n is odd

is an involution.
Proof:

flf(n)) = n

argue that f(f(n)) = n




Theorem: The function f: Z - Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.
Proof:

What does it mean for f to be an
iInvolution?

vn € Z. f(f(n)) = n.

Therefore, we'll have the reader pick
some n € Z, then argue that f(f(n)) = n.




Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z.°



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

1s an involution.
Proof: Pick some n € Z. We need to show that f(f(n)) = n.



Theorem: The function f: Z — Z defined as

_|n+1 1if n is even
fln) = n—1 if n is odd

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even.

Case 2: n is odd.



Theorem: The function f: Z — Z defined as

f(n) =

n+1 1if n is even
n—1 1if n is odd
is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: nis even. Then f(n) = n+1, which is odd, by the
Lemma.

Case 2: n 1s odd.



Theorem: The function f: Z — Z defined as

f(n) =

n+1 1if n is even
n—1 1if n is odd
is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: nis even. Then f(n) = n+1, which is odd, by the
Lemma. This means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: n is odd.



Theorem: The function f: Z — Z defined as

n+1 1if n is even
n) = . .
f( ) n—1 if n is odd
is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: nis even. Then f(n) = n+1, which is odd, by the
Lemma. This means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: nis odd. Then f(n) = n - 1, which is even, by the
Lemma.



Theorem: The function f: Z — Z defined as

f(n) =

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: nis even. Then f(n) = n+1, which is odd, by the
Lemma. This means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: nis odd. Then f(n) = n - 1, which is even, by the
Lemma. Then we see that f(f(n)) =fin-1)=0-1) + 1
= n.

n+1 if n is even
n—1 if n is odd



Theorem: The function f: Z — Z defined as

n+1 1if n is even

fln) = n—1 1if n is odd

is an involution.

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: nis even. Then f(n) = n+1, which is odd, by the
Lemma. This means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: nis odd. Then f(n) = n - 1, which is even, by the
Lemma. Then we see that f(f(n)) =fin-1)=0-1) + 1
= n.

In either case, we see that f(f(n)) = n, which is what we
need to show. B



Theorem: The function f: Z - Z

_ In+1 if
fln) =1 "1 i

is an involution.

defined as

n is even
n is odd

Proof: Pick some n € Z. We need to show that f(f(n)) = n. To

do so, we consider two cases.

Case 1: nis even. Then f(n) = n+1, which is odd, by the
Lemma. This means that f(f(n)) = f(n+1) = (n+1) -1 = n.

Case 2: nis odd. Then f(n) = n - 1, which is even, by the
Lemma. Then we see that f(f(n)) =fin-1)=0-1) + 1

= 1.

In either case, we see that f(f{
need to show. B

)) = n which is what we

I Important style rule !!
This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,
just as usual.




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—-B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Then prove B.

AV DB

Either prove —-A — B or
prove B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.

Pop Quiz! N
Which row of this
proof techniques
table did we use for
for that proof? 4




Theorem: The function f: N — N defined as f(n) = n? is not
an involution.



Theorem: The function f: N — N defined as f(n) = n? is not
an involution.

What does it mean for f to be an involution?
vn € N. f(f(n)) = n.
What is the negation of this statement?

-Vn € N. f(f(n)) = n

dn € N. =(f(f(n)) = n)
dn € N. f(f(n)) # n

Therefore, we need to pick some concrete choice of n
such that f(f(n)) # n.




Theorem: The function f: N = N defined as f(n) = n? is not
an involution.

idn € N.

pick some concrete choice of n




Theorem: The function f: N = N defined as f(n) = n? is not
an involution.

flf(n)) # n

such that f(fin)) # n




Theorem: The function f: N — N defined as f(n) = n? is not
an involution.

What does it mean for f to be an involution?
vn € N. f(f(n)) = n.
What is the negation of this statement?

-Vn € N. f(f(n)) = n

dn € N. =(f(f(n)) = n)
dn € N. f(f(n)) # n

Therefore, we need to pick some concrete choice of n
such that f(f(n)) # n.




Theorem: The function f: N — N defined as f(n) = n? is not
an involution.

Proof: We need to show that there is some n € N where

flf(n)) = n.
Pick n = 2. Then
f(fn)) = f(f(2))
= f(4)
= 10,
which means that f(f(n)) # 2, as required. W



Theorem: The function f: N — N defined as f(n) = n? is not
an involution.

Proof: We need to show that there is some n € N where

flf(n)) = n.
Pick n = 2. Then
f(fn)) = f(f(2))
= f(4)
= 10,
which means that f(f(n)) # 2, as required. W

I Important style rule !!
This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,
just as usual.




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—-B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Then prove B.

AV DB

Either prove —-A — B or
prove B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.

Pop Quiz! N
Which row of this
proof techniques
table did we use for
for that proof? 4




Another Class of Functions



Mercury
Earth

—» Mars

/

/ \ —»Jranus
/ \ — Neptune

—»Saturn

Q
Q
D‘l \ —>|upiter
h
by
P




Injective Functions

A function f: A - B is called injective (or one-to-one) if
the following statement is true about f:

Va: € A. Vaz € A. (a1 # az - f(a1) # f(az))
(“If the inputs are different, the outputs are different.”)

The following first-order definition is equivalent (why?)
and is often useful in proofs.

Va: € A. Vaz € A. (f(a1r) = f(az) - a1 = az)
(“If the outputs are the same, the inputs are the same.”)
A function with this property is called an injection.

How does this compare to our second rule for functions?



Quick Check:

Inj ections Enter the number of injective

functions (0-3) on PollEw.

» Let fbe the set of all CS103 students.
Which of the following are injective?

« f: 8~ N where f(x) is x’s Stanford ID number.

« f: 8- ®where ®s the set of all countries and
f(x) is x’s country of birth.

» f: 8- Cwhere (-3 the set of all given (first)
names, where f(x) is x’s given (first) name.

A function f: A - B is injective if either statement is true:

Vx1 € A. Vx2 € A. (xa1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz2 € A. (f(x1) = f(x2) =» x1 = x2)



Injections

v « f: 8- N where f(x) is x’s Stanford ID number.

A function f: A - B is injective if either statement is true:

Vx1 € A. Vx2 € A. (xa1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz2 € A. (f(x1) = f(x2) =» x1 = x2)



Injections

X « f: 8- ®where ®s the set of all countries and
f(x) is x’s country of birth.

A function f: A - B is injective if either statement is true:

Vx1 € A. Vx2 € A. (xa1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz2 € A. (f(x1) = f(x2) =» x1 = x2)



Injections

X, f: 8- C:Owhere (-3s the set of all given (first)
names, where f(x) is x’s given (first) name.

A function f: A - B is injective if either statement is true:

Vx1 € A. Vx2 € A. (xa1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz2 € A. (f(x1) = f(x2) =» x1 = x2)



Injections

» Let fbe the set of all CS103 students.
Which of the following are injective?

v « f: 8- N where f(x) is x’s Stanford ID number.

X « f: 8- ®where ®s the set of all countries and
f(x) is x’s country of birth.

X, f: 8- C:Owhere (-3s the set of all given (first)
names, where f(x) is x’s given (first) name.

A function f: A - B is injective if either statement is true:

Vx1 € A. Vx2 € A. (xa1 # x2 = f(x1) # f(x2))
Vx1 € A. Vxz € A. (f(x1) = f(x2) =» x1 = x2)



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does it mean for the function f to be
Injective?




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does it mean for the function f to be
Injective?

Vm € N. Vnz € N. (f(m1) = f(n2) - n1 = n2)
Vnm € N.Vnz € N. (n1 # nz2 = f(m) # f(n2) )




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does it mean for the function f to be
Injective?

Vm € N. Vnz € N. (f(m1) = f(n2) - n1 = n2)




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does it mean for the function f to be
Injective?

Vm € N. Vnz € N. (f(m1) = f(n2) - n1 = n2)

Therefore, we'll pick arbitrary ni1, nz € N, assume
f(ni) = f(n2), then prove that n: = no.




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

Vni € N. Vnz € N.

pick arbitrary ni, n2 € N,




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

f(n) = f(n2) -

assume

flni) = f(n2),




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

- N1 = N2

then prove that n: = no.




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = no.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = no.

Since f(ni1) = f(nz2), we see that
2ni1+ 7 =2n2+ 7.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = no.

Since f(ni1) = f(nz2), we see that

2m + 7 =2n2+ 7.
This in turn means that

2n1 = 2n2



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = no.

Since f(ni1) = f(nz2), we see that

2m + 7 =2n2+ 7.
This in turn means that

2n1 = 2no2,

SO N1 = n2, as required.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = no.

Since f(ni1) = f(nz2), we see that

2m + 7 =2n2+ 7.
This in turn means that

2n1 = 2no2,

SO N1 = n2, as required. N

Good exercise: Repeat this proof
using the other definition of
injectivity!




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = no.

Since f(ni1) = f(nz2), we see that

2m + 7 =2n2+ 7.
This in turn means that

2Nn1 = 202

SO N1 = nz, as required. N " Important stylg rule !!
This proof contains no

first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,
just as usual.




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—-B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Then prove B.

AV DB

Either prove —-A — B or
prove B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.

Pop Quiz! N
Which row of this
proof techniques
table did we use for
for that proof? 4




Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:
What does it mean for f to be injective?

Vx1 € Z. Vx2 € Z. (xa1 # x2 = f(x1) # f(x2))

What is the negation of this statement?

-Vx1 € Z. Vxz2 € Z. (x1 # x2 = f(x1) # f(x2))
dx1 € Z. °Vx2 € Z. (x1 # x2 = f(x1) # f(x2))
dx1 € Z. Ax2 € Z. = (x1 # x2 = f(x1) # f(x2))
dx1 € Z. Ax2 € Z. (x1 # x2 A = (f(x1) # f(x2)))
dx1 € Z. Ix2 € Z. (x1 # x2 A f(x1) = f(x2))

Therefore, we need to find x1, x2 € Z such that x1 # x2, but f(x1) = f({xz2). Can we
do that?




Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:

dx1 € Z. Ax2 € Z.

we need to find x1, x2 € Z




Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:

(x1 # x2 A f(x1) = f(x2))

such that x1 # x2, but f(x1) = fix2)




Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof:
What does it mean for f to be injective?

Vx1 € Z. Vx2 € Z. (xa1 # x2 = f(x1) # f(x2))

What is the negation of this statement?

-Vx1 € Z. Vxz2 € Z. (x1 # x2 = f(x1) # f(x2))
dx1 € Z. °Vx2 € Z. (x1 # x2 = f(x1) # f(x2))
dx1 € Z. Ax2 € Z. = (x1 # x2 = f(x1) # f(x2))
dx1 € Z. Ax2 € Z. (x1 # x2 A = (f(x1) # f(x2)))
dx1 € Z. Ix2 € Z. (x1 # x2 A f(x1) = f(x2))

Therefore, we need to find x1, x2 € Z such that x1 # x2, but f(x1) = f({xz2). Can we
do that?




Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers xi1 and xz
such that x1 # x2, but f(x1) = f(x2).



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers xi1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1.



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers xi1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) = (-1)* =1



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers xi1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) = (-1)* =1

and

fix2) = f(1) =1 =1



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers xi1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) = (-1)* =1

and

fixe) = (1) = 1* =1,

so f(x1) = f(xz2) even though x1 # x2, as required.



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f
1S not injective.

Proof: We will prove that there exist integers xi1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) = (-1)* =1

and

fixe) = (1) = 1* =1,

so f(x1) = f(xz2) even though x1 # x2, as required. W



Injective Functions

Theorem: Let f: Z - N be defined as f(x) = x*. Then f

1S not injective.

Proof: We will prove that there exist integers x1 and xz
such that x1 # x2, but f(x1) = f(x2).

Let x1 = -1 and x2 = +1. Notice that
f(xa)) =f(-1) = (-1)* =1

and

fix2) = f(1) 1i=

so f(x1) = f(xz2) even though x

I Important style rule !!
This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,
just as usual.




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—-B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Then prove B.

AV DB

Either prove —-A — B or
prove B — A.
(Why does this work?)

Ao B

Prove A - B and B - A.

Simplify the negation, then
consult this table on the result.

Pop Quiz! N
Which row of this
proof techniques
table did we use for
for that proof? 4




Recap tfrom Today

* A function takes in an element of a
domain and maps it to an element of a
codomain. Functions must be
deterministic.

* Definitions are often given in first-order
logic, and the structure of a first-order logic
statement dictates the structure of a proof.

» Involutions and injections are specific
classes of functions that have nice
properties.



Next Time

* Surjections, Bijections
 Two new function types.
 Connecting Function Types

» Involutions, injections, surjections and
bijections are related to one another. How?

 Function Composition

* Sequencing functions together.
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