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To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

We’ll refer to this 
several times today

to help us write
proofs. You’ll find

that although you’ve
never written proofs

about Functions 
before, it’s just the
same bag of tricks
that we’re used to!

Review from Week 1:
Proof techniques
summary table.



  

Outline for Today

● What is a Function?
● It’s more nuanced than you might expect.

● Domains and Codomains
● Where functions start, and where functions end.

● Defining a Function
● Expressing transformations compactly.

● Special Classes of Functions
● Useful types of functions you’ll encounter IRL.

● Proofs on First-Order Definitions
● A key skill.



  

What is a function?



  

f(x) = x4 – 5x2 + 4

source: https://saylordotorg.github.io/text_intermediate-algebra/section_07/6aaf3a5ab540885474d58855068b64ce.png

In high school math:

Take a real 
number as input

Give a real 
number as output



  

  int flipUntil(int n) {
    int numHeads = 0;
    int numTries = 0;
         
    while (numHeads < n) {
      if (randomBoolean()) {
        numHeads++;
      }
      numTries++;
    }
         
    return numTries;
  }

  int flipUntil(int n) {
    int numHeads = 0;
    int numTries = 0;
         
    while (numHeads < n) {
      if (randomBoolean()) {
        numHeads++;
      }
      numTries++;
    }
         
    return numTries;
  }

Take input(s) of 
different type(s)

Return an output
of some type

In C++ coding:



  

In logic, functions are deterministic.
 

That is, given the same input, a function must 
always produce the same output.

In C++ code, we can use random numbers, 
but that would not be a valid function under 

our definition.            



  

Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For all x in the domain, f(x) belongs to the 
codomain.

Domain Codomain

The function 
must be defined 

for every element 
of the domain.

The function 
must be defined 

for every element 
of the domain.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

must be 
produced as 

outputs.

The output of the 
function must 

always be in the 
codomain, but 

not all elements 
of the codomain 

must be 
produced as 

outputs.



  

Domains and Codomains

● Every function f has two sets associated with it: its 
domain and its codomain.

● A function f can only be applied to elements of its 
domain. For all x in the domain, f(x) belongs to the 
codomain.

double absoluteValueOf(double x) {
    if (x >= 0) {
        return x;
    } else {
        return -x;
    }
}

The domain of this function 
is ℝ. Any real number can be 

provided as input.

The domain of this function 
is ℝ. Any real number can be 

provided as input.

The codomain of this function is 
ℝ. Everything produced is a real 
number, but not all real numbers 

can be produced.

The codomain of this function is 
ℝ. Everything produced is a real 
number, but not all real numbers 

can be produced.



  

Domains and Codomains

● If f is a function whose domain is A and whose 
codomain is B, we write f : A → B.

● Think of this like a “function prototype” in C++.

f : A → B

DomainDomain CodomainCodomain

Function
name

Function
name

B f(A arg);

DomainDomainCodomainCodomain

Function
name

Function
name



  

The Official Rules for Functions

● Formally speaking, we say that f : A → B if the 
following two rules hold.

● First, f must be obey its domain/codomain rules:

∀a ∈ A. ∃b ∈ B. f(a) = b
(“Every input in A maps to some output in B.”)

● Second, f must be deterministic:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ = a₂ → f(a₁) = f(a₂))
(“Equal inputs produce equal outputs.”)

If you’re ever curious about whether something is a valid 
function, look back at these rules to decide. The formal 
definition holds the answers! 

If you’re ever curious about whether something is a valid 
function, look back at these rules to decide. The formal 
definition holds the answers! 



  

The Official Rules for Functions

● Formally speaking, we say that f : A → B if the 
following two rules hold.

● First, f must be obey its domain/codomain rules:

∀a ∈ A. ∃b ∈ B. f(a) = b
(“Every input in A maps to some output in B.”)

● Second, f must be deterministic:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ = a₂ → f(a₁) = f(a₂))
(“Equal inputs produce equal outputs.”)

Quick Check: 
● T/F: A function can have an empty domain.

● If you have extra time, discuss this with your neighbors:
● T/F: A function can have an empty codomain.

Quick Check: 
● T/F: A function can have an empty domain.

● If you have extra time, discuss this with your neighbors:
● T/F: A function can have an empty codomain.



  

Defining Functions



  

Defining Functions

● To define a function, you need to
● specify the domain,
● specify the codomain, and
● give a rule used to evaluate the function.

● All three pieces are necessary.
● There are a few ways to do this. Let’s go 

over a few examples.



  

Defining Functions

● To define a function, you need to
● specify the domain,
● specify the codomain, and
● give a rule used to evaluate the function.

● All three pieces are necessary.
● There are a few ways to do this. Let’s go 

over a few examples.

Usually these are 
handled by using the 
f : A → B notation.

Also need to do 
this! Learn about 
it now.



  

White-Tailed
Kite

Anna’s
Hummingbird

Draw sets (ovals) to give the domain and codomain.
Draw a mapping (arrows) to define the function’s action.

Red-Shouldered
Hawk

Goldfinch

Functions can be defined as a picture.



  

f : ℤ → ℤ, where
 

f(x) = x2 + 3x – 15

Use the : notation to name the domain and codomain.
Use the f(x) = notation to define the function’s action. 

Functions can be defined as a rule.



  

Again, both parts of the rule (: and f(x)) are necessary. Make 
sure at least one condition applies to each element of the 
domain, and that if more than one condition applies to the 

same element, they give the same answer!)

f (n)={n if n≥0
−n if n≤0

f : ℤ → ℕ, where

Some rules are given piecewise. 



  

Some Nuances



  

f (x) = x+2
x+1

Quick Check: 

If introduced as f : ℕ → ℝ, 
would this be a valid function?

Quick Check: 

If introduced as f : ℕ → ℝ, 
would this be a valid function?



  

f (x) = x+2
x+1

Quick Check: 

If introduced as f : ℕ → ℝ, 
would this be a valid function?

Quick Check: 

If introduced as f : ℕ → ℝ, 
would this be a valid function?

Yep, it’s a function! Every 
natural number maps to 

some real number.

Yep, it’s a function! Every 
natural number maps to 

some real number.



  

f (x) = x+2
x+1

Quick Check: 

If introduced as f : ℝ → ℝ, would 
this be a valid function?

Quick Check: 

If introduced as f : ℝ → ℝ, would 
this be a valid function?



  

f (x) = x+2
x+1

Quick Check: 

If introduced as f : ℝ → ℝ, would 
this be a valid function?

Quick Check: 

If introduced as f : ℝ → ℝ, would 
this be a valid function?

This expression isn’t 
defined when x = -1, so f 
isn’t defined over its full 

domain. We therefore 
don’t consider it to be a 

function.

This expression isn’t 
defined when x = -1, so f 
isn’t defined over its full 

domain. We therefore 
don’t consider it to be a 

function.



  

A B

Stanford

Berkeley

Michigan

Arkansas

Cardinal

White

Blue

Gold

Is this a function from A to B?



  

California

New York

Vermont

Washington 
DC

Sacramento

Montpelier

Albany

A B

Is this a function from A to B?



  

Special Types of Functions



  



  



  



  

Undoing by Doing Again

● Some operations invert themselves. For example:
● Flipping a switch twice is the same as not flipping it at all.
● In first-order logic, ¬¬A is equivalent to A.
● In algebra, -(-x) = x.
● In set theory, (A Δ B) Δ B = A. (Yes, really!)

● Operations with these properties are surprisingly 
useful in CS theory and come up in a bunch of 
contexts.
● Storing compressed approximations of sets (XOR filters).
● Theoretically unbreakable encryption (one-time pads).
● Transmitting a large file to multiple receivers (fountain 

codes).



  

Involutions

A function f : A → A (notice this requires the domain 
and codomain to be the same set) is called an 

involution if the following first-order logic 
statement is true about f:

∀x ∈ A. f(f(x)) = x.
(“Applying f twice is equivalent to not applying f at all.”)

● Involutions have lots of interesting properties. 
Let’s explore them and see what we can find.



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x.
● f : ℤ → ℤ defined as f(x) = -x.
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x.
● f : ℤ → ℤ defined as f(x) = -x.
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd

Quick Check: 

Enter the number of 
involutions (0-4) on PollEv.

Quick Check: 

Enter the number of 
involutions (0-4) on PollEv.



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x.
● f : ℤ → ℤ defined as f(x) = -x.
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x.
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x.
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ.
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ. 
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ. Not a function!
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ. Not a function!
● f : ℕ → ℕ defined as follows:

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ. Not a function!
● f : ℕ → ℕ defined as follows: Yep!

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ → ℝ defined as f(x) = ¹/ₓ. Not a function!
● f : ℕ → ℕ defined as follows: Yep!

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions

● Which of the following are involutions?
● f : ℤ → ℤ defined as f(x) = x. Yep!
● f : ℤ → ℤ defined as f(x) = -x. Yep!
● f : ℝ - {0} → ℝ - {0} defined as f(x) = ¹/ₓ. Yep!
● f : ℕ → ℕ defined as follows: Yep!

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Involutions, Visually

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

꩜

+

☞

≈

⬠

꩜

+

☞

≈

⬠



  

Involutions, Visually

A function f : A → A is called an involution if the following
first-order logic statement is true about f:

  

∀x ∈ A. f(f(x)) = x.

꩜

+

☞

≈

⬠



  

Proofs on Involutions



  

Theorem: The function f : ℤ → ℤ defined as

   
is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we 
need to show. ■

f (n) = {n+1 if n  is even
n−1 if n  is odd

For this problem, we will rely on a 
Lemma (like a “helper theorem”), 
and assume this is true, for this 
problem only:

Lemma: For all integers n, n is 
odd if and only if n + 1 is even.

For this problem, we will rely on a 
Lemma (like a “helper theorem”), 
and assume this is true, for this 
problem only:

Lemma: For all integers n, n is 
odd if and only if n + 1 is even.



  

Theorem: The function f : ℤ → ℤ defined as

   
is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we 
need to show. ■

f (n) = {n+1 if n  is even
n−1 if n  is odd



  

Theorem: The function f : ℤ → ℤ defined as

   
is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we 
need to show. ■

f (n) = {n+1 if n  is even
n−1 if n  is odd

What does it mean for f to be an 
involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick 
some n ∈ ℕ, then argue that f(f(n)) = n.

What does it mean for f to be an 
involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick 
some n ∈ ℕ, then argue that f(f(n)) = n.



  

Theorem: The function f : ℤ → ℤ defined as

   
is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
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is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
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Case 1: n is even. Then f(n) = n+1, which is odd. This
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Theorem: The function f : ℤ → ℤ defined as

   
is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.
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need to show. ■
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Theorem: The function f : ℤ → ℤ defined as

   
is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.
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need to show. ■

f (n) = {n+1 if n  is even
n−1 if n  is odd
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∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick 
some n ∈ ℤ, then argue that f(f(n)) = n.

What does it mean for f to be an 
involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick 
some n ∈ ℤ, then argue that f(f(n)) = n.



  

Theorem: The function f : ℤ → ℤ defined as

   
is an involution.

Proof: Pick some n ∈ ℕ. We need to show that f(f(n)) = n. To
do so, we consider two cases.

Case 1: n is even. Then f(n) = n+1, which is odd. This
means that f(f(n)) = f(n+1) = (n+1) – 1 = n.

Case 2: n is odd. Then f(n) = n – 1, which is even. Then
we see that f(f(n)) = f(n – 1) = (n – 1) + 1 = n.

In either case, we see that f(f(n)) = n, which is what we 
need to show. ■

f (n) = {n+1 if n  is even
n−1 if n  is odd

What does it mean for f to be an 
involution?

∀n ∈ ℤ. f(f(n)) = n.

Therefore, we’ll have the reader pick 
some n ∈ ℤ, then argue that f(f(n)) = n.

What does it mean for f to be an 
involution?
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!! Important style rule !!
This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,

just as usual.

!! Important style rule !!
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first-order logic syntax
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just as usual.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

Pop Quiz!
Which row of this 
proof techniques

table did we use for
for that proof?



  

Theorem: The function f : ℕ → ℕ defined as f(n) = n2 is not
an involution.



  

Theorem: The function f : ℕ → ℕ defined as f(n) = n2 is not
an involution.
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∀n ∈ ℕ. f(f(n)) = n.

What is the negation of this statement?

¬∀n ∈ ℕ. f(f(n)) = n
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Theorem: The function f : ℕ → ℕ defined as f(n) = n2 is not
an involution.

Proof: We need to show that there is some n ∈ ℕ where
f(f(n)) ≠ n.

Pick n = 2. Then

       f (f(n)) =  f(f(2))

        =  f(4)

        =  16,

which means that f(f(n)) ≠ 2, as required. ■



  

Theorem: The function f : ℕ → ℕ defined as f(n) = n2 is not
an involution.

Proof: We need to show that there is some n ∈ ℕ where
f(f(n)) ≠ n.

Pick n = 2. Then

       f (f(n)) =  f(f(2))

        =  f(4)

        =  16,

which means that f(f(n)) ≠ 2, as required. ■

!! Important style rule !!
This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,

just as usual.

!! Important style rule !!
This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,

just as usual.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

Pop Quiz!
Which row of this 
proof techniques

table did we use for
for that proof?



  

Another Class of Functions



  

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

♀
☿

♂
♃
♄
♅
♆

♀



  

Injective Functions

● A function f : A → B is called injective (or one-to-one) if 
the following statement is true about f:

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))

(“If the inputs are different, the outputs are different.”)

● The following first-order definition is equivalent (why?) 
and is often useful in proofs.

∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)

(“If the outputs are the same, the inputs are the same.”)

● A function with this property is called an injection.

● How does this compare to our second rule for functions?



  

Injections

● Let  be the set of all CS103 students.     �‍
Which of the following are injective?
● f :  → ℕ where     �‍ f(x) is x’s Stanford ID number.
● f :  → , where  is the set of all countries and       �‍  �  �

f(x) is x’s country of birth.
● f :  → , where  is the set of all given (first)       �‍  �  �

names, where f(x) is x’s given (first) name.

A function f : A → B is injective if either statement is true:
  

∀x₁ ∈ A. ∀x₂ ∈ A. (x₁ ≠ x₂ → f(x₁) ≠ f(x₂))
∀x₁ ∈ A. ∀x₂ ∈ A. (f(x₁) = f(x₂) → x₁ = x₂)

Quick Check: 

Enter the number of injective 
functions (0-3) on PollEv.

Quick Check: 

Enter the number of injective 
functions (0-3) on PollEv.
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Injective Functions

Theorem: Let f : ℕ → ℕ be defined as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■ 
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What does it mean for the function f to be 
injective?

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( f(n₀) = f(n₁) → n₀ = n₁ )
 

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( n₀ ≠ n₁ → f(n₀) ≠ f(n₁) )

Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ where 
f(n₀) = f(n₁), then prove that n₀ = n₁.

What does it mean for the function f to be 
injective?

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( f(n₀) = f(n₁) → n₀ = n₁ )
 

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( n₀ ≠ n₁ → f(n₀) ≠ f(n₁) )

Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ where 
f(n₀) = f(n₁), then prove that n₀ = n₁.
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To prove that
this is true…
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∃x. A

A → B

A ∧ B
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¬A
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arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
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(Why does this work?)
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Simplify the negation, then
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Pop Quiz!
Which row of this 
proof techniques
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for that proof?
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f(x₁) = f(-1) = (-1)4 = 1

and

f(x₂) = f(1) = 14 = 1,

so f(x₁) = f(x₂) even though x₁ ≠ x₂, as required. ■     !! Important style rule !!
This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,

just as usual.

!! Important style rule !!
This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,

just as usual.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specific choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

Pop Quiz!
Which row of this 
proof techniques

table did we use for
for that proof?



  

Recap from Today

● A function takes in an element of a 
domain and maps it to an element of a 
codomain. Functions must be 
deterministic.

● Definitions are often given in first-order 
logic, and the structure of a first-order logic 
statement dictates the structure of a proof.

● Involutions and injections are specific 
classes of functions that have nice 
properties. 



  

Next Time

● Surjections, Bijections
● Two new function types.

● Connecting Function Types
● Involutions, injections, surjections and 

bijections are related to one another. How?
● Function Composition

● Sequencing functions together.
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